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ON THE THEORY OF THE GYROPENDULUM®

Iu, N. CHELNOKOV

Precession equations of motion of the gyropendulum relative to the accompanying
Darboux trihedron /1/ and, also, precession equations of the gyropendulum motion
relative to the geographic trihedron, considered in /2,3/, are given a kinematic in-
terpretation. Linear differential equations that define the gyropendulum behavior
at finite deflection angles of the rotor axis from the vertical are established for
arbitrary motions of its suspension point over the surface of the Earth. These equa-
tions have the form of kinematic egquations of a solid body spherical motion in terms
of Rodrigues-Hamilton parameters, and in the case of stationary base they are in
agreement with equations established in /4/. The Liapunov stability ot the gyro-
pendulum eguations in both the finite Euler—Krylov angles and in the Rodrigues
—~ Hamilton parameters is proved. Particular cases of integrability in quadratures
of the gyropendulum precession equations at finite angles are indicated.

1. Let us consider the gyropendulum motion relative to the natural Darboux trihedron
O02°1°z° with its vertex at the center of the Cardan universal suspension joint with its edge
2° normal to the Earth surface and edge z° directed along the suspension center velocity

vector v /1,5/.
The input precession equations of motion of a gyropendulum for arbitrary motion of its
suspension point over the Earth surface are of the form

Ho, =a(P.+ F),Ho) =a(P,+ F) (1.1)

where ®:, ®; are projections of the absolute angular velocity @’ of the system of coordinat-
es Ozyz with its origin at the Cardan suspension center on its axes and axis z directed
along the gyropendulum axis, H is the gyroscope intrinsic moment; P, P, and F. F, are
projections of the resultant P of transfer inertia forces and of gravity force F (these
forces pass through the system "inner ring-rotor" center of gravity) on the axes of the system
of coordinates Ozyz, and a is the distance between the center of gravity and the coordinate
origin 0.

We determine the position of the coordinate system Ozyz relative to the trihedron
Or°y°”° by the angles &, B,y (Fig.l). Angles @ and P define the position of the gyropend-
ulum rotor axis z relative to the trihedron (7, Below are given the cosines of angles

between the axes of the coordinate system Ozyz and the edges of the trihedron 0z°y°z°

z° yo . Z° (1.2)
z cosPcosy sinesinfcosy 4 cosasiny — cosasinfcosy-+sinasiny
y —cosPsiny —sinasinfsiny 4 cosacosy cosasinPsiny + sinacosy
z sin § — sin.a cos P cosacosfP
We denote by @ the vector of angular velocity of the coordinate system Oxyz rotation
relative to the trihedron O0z2°y°z°. The projections o;(i=4,2,3) of this vector on the axes of
the coordinate system 02°)°:° are defined by formulas
@, = o + ¥ sinf, 0, = B cosa — y cosPsina, ;=P sina -+ 7 cosP cosa 1.3
from which we obtain
& = ©; —tg B (050080 — @,sina), B = @,cosa + Vs8N, 4 = (9 cos — w,sina)cos P (1.4)

We select the motion of the coordinate system Ozyz Wwith respect to coordinate 7Y so
that the projection w’, of vector @ on the 2z -axis be determined by formula

o', = a (P, + F)H (1.5)
where P, and F, are projections of vectors P and F on the z-axis. The scalar relations
(1.1) and (1.5) are then equivalent to the single vector relation
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o =aP+F)/H=a(f — mw)/H (1.8}

where m is the over-all mass of the inner ring and rotor of
the gyropendulum, and w is the absolute acceleration of the
gyropendulum suspension point /1,5/.

The vector of relative angular velocity of rotation of
the coordinate system Ozyz is o = o — @°, where o° is
the absolute angular velocity of rotation of the trihedron

02°y’s°. Using formula (1.8) we obtain

o = a(F — mwW/H — o (1.7
Projecting the left- and right-hand sides of the vector
Fig.1l equality (1.7) on the edges of the trihedron Oz°y’;° and tak-

ing into account expressions for the projections of vectors
F,w, and @ on the edges of the trihedron 02°2 /1,5/,
for the projections o; of vector @ we obtain

am . am v — a e PR
THY = g0 — s "’ﬂ*""u‘(F— I3 )”“"’0 (“’0=—p')

Wy = —

{1.8)

where v is the velocity of the gyropendulum suspension point relative to the nonrotating
sphere § with the same center and radius as the Earth, R is the Earth radius, and p is the
radius of geodesic curvature of the gyropendulum suspension peint trajectory, where that point
is located at a given instant of time,

Formulas (1.8) and the first two equations of system {1.4) yield the equations of preces-
sion motion of the 2 -~axis of the gyropendulum rotor relative to the Darboux trihedron for an
arbitrary motion of its suspension point over the Zarth surface /1,5/

H (vR™'sine sinf — o.cosasinP + o cosp) = ¢ [(F — mv*R~Y)cosasinf — m (v’ cosp -+ wovsinasin )] (1.9

H (vR'cosa + agsing -+ §) = al(mtR™? — Flsing — Mmovcos «f

Taking into account equality (1.8) we reduce the third equation of system (l.4) to the
form

. 1 a mp® " am % . ]

V= {[?( —-—F)—mo] cosa—}—(—ﬁ-mov,—-ﬁ-—)smug- {1.10)
which, after the determination of the unknown functions of time a =a(f) and § = B (¢), enabl~
es us to establish the law of variation of coordinate vy = y(f) for which eguality (1.5} and,
consequently also, the vector equality (1.6) are valid.

2. We attach to the system of coordinates Ozyz a solid body D locating one of its
points at the origin O of the coordinates system Ozyz. Let the body D effect a spherical
motion at angular velocity ® defined by formula (1.7) relative to the Darboux trihedron

02°y°s°. The kinematic equations of that motion are of the form (1.4).

We introduce vector 8 of final turn which defines the position of body D relative to
the trihedron 0z°)°z°, and denote the Rodrigues— Hamilton parameters that correspond to the
final turn vector 8 by A; (7 =0,1,2,3), Parameters A; are determined by the angles «.,f. 7y
in conformity with the known formulas /4/. To cbtain formulas for angles «, B, v in terms of
the Rodrigues— Hamilton parameters A; » we define the expressions (1.2) in terms of para-
meters A; in conformity with the formulas given in /6/ and obtain

sin B = 2 (hohs + Mhg), tga =2 (Aehy — Mg} / (¥ + Ag¥ = A% — A% (2.1}
tgy = 2 (Rohg — Aho) / (A% + A% — ko® — A5%)
The kinematic equations of spherical motion of bedy D that relate the Rodrigues—

Hamilton parameters and their derivatives to projections @; of vector ® of the body relat-
ive angular velocity on the axes of the coordinate system 0z°)°2° are of the form /6,7/

2hg = = (@hy + @Ay + @5hg), 24 = Grho + Gghy — ks (2.2)
2y = @yhy + @ghy — Gihg ZXy = @ghe T WA, — @ohy

It was shown above that the dynamic equations (1.9) of the gyropendulum precession mo-
tion are equivalent to the first two kinematic equations (1.4) and formulas (1.8).Equations
(1.4) are, in turn, equivalent to Egs. (2.2), since both represent in different form the
kinematic equations of spherical motion of one and the same body D. Hence, when &; are
specified by formulas (1.8), Egs. (2.2) can be treated as equations of precession motion of



On the theory of the gyropendulum 705

the gyropendulum rotor axis 2z relative to the Darboux trihedron. These equations, as well
as Egs. (1.9) are valid for any arbitrary motion of the gyropendulum suspension point over
the Earth surface, provided the conditions stipulated in /1,5/ imposed on the forces acting
on the gyropendulum are satisfied.
For determining angles ¢ and f that define the position of the gyropendulum rotor axis

2z relative to the Darboux trihedron for arbitrary functions v({) and «,(t) it is, thus,
possible to solve four linear differential equations (2.2) instead of two essentially non-
linear differential equations (1.9), by passing from parameters A; to angles @ and f§ in
conformity with the first two formulas (2.1). The third formula (2.1) makes it possible, after

the determination of parameters A;, to establish the law of variation of angle y for which
equalities (1.5) and (l1.6) are valid.

In the case of a fixed mhrnnnnﬁvﬂ um suspension point @ = 0, v =20 Hence q; = 0, n, = 0,
wg = —aF /H and Egs. (2. 2) assume the form of equations obta:.ned in /4/ for a gyropendulum
mounted on a fixed base on condition that the introduced there quantity h =, —a (P, + F,)/ H
4 zeroc for the chosen law of motion of the coordinate system QOzy: with re ot o anale v,
is zero for the chosen law of motion ¢f the coordinate Syselsl Uyl with respect t¢ angle ¥

3. Let us show that there is an analogy between the gyropendulum precession equations
and the eguations of the basic problem of inertial navigation /5,8,9/.

Let §'q*{* be a nonrotating coordinate system, and XYZ a system of coordinates attached
to the stabilized platform. Orientation of the coordinate system XYZ relative to the tri-
hedron §'n’f’ is defined by the angles ¢,—@, —~% whose meaning is explained in /5/. Condition-
ally assuming the coordinate axes z, y, z as nonrotating, we superpose these on the axes e, 7
respectively. It follows from Fig.l and the scheme of turns of the coordinate trihedron XYZ
relative to &n'l* presented in /5/ that when the equalities

e=xpf=q v=—p (3.1)
are satisfied, the coordinate axes ¥, }°, 2° coincide with axes Z, X, Y, respectively, and the

projections @i, @y, ®; of the absolute angular velocity of rotation of the trihedron XYZ
about its own axis are defined by

SV (3.7)
Wy = —Wy, By = —0y, W, = —@ 1.2/

From Egs. (1.3) and equalities (3.1) and (3.2) we obtain equations
— @ cosx —Ycospsink =, —¢sinx +VCcosg cosx =0, (3.3)

— % + Y sing =
which are the same as the equations of the basic problem of inertial navigation in terms of
Euler—Krylov angles /5,8,9/.

Liapunov stability of solutions of Egs. (3.3) for any continuous functions @., @, . was
proved in /10-14/. Equations (l.3) together with formulas (3.1) and (3.2) are equivalent to
Egs. (3.3). Equations (1.9) of the gyropendulum are obtained from Egs. (l1.3) as the result
of their solution for the derivatives o', §', ¥° and the substitution of expressions (1.8),
whose continuity is obvious, for ;. Consequently, the solutions of Eqs. (1.9) of the gyro-

pendulum in terms of Euler—Krylov angles & and P are also Liapunov stable.
The Rodrigues—Hamilton parameters I.(:’ =0 4.9 3 that dafine the position of th

1ne Rodrigues maliplioen paramecer PN =V, 4, 6, 0p WOAL CGRZANe Lne posSitlion o

ordinate system XYZ relative to P'*l* are related to parameters A; by formulas
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From equalities (3.2) and (3.4) and Egs. (2.2) we cbtain the equations

21" £ oos 7 [T IR Y [} AP | Lo 7 YO | 1 =y
“tg - z"l T Wpte o Wiig), <l = Wylg T Wglp — Wyig 12.92])
2l = oyl = 0d; + agdy, 21y = 0.y +oyl; — o4,
that coincide with the equations of the basic problem of inertial navigation in terms of the
Rodrigues — Hamilton parameters /5/.

In studies of inertial navigation /12,14—17/ another set of Rodrigues—HKamilton para-
meters Mm; is used, as a rule, since it leads to simpler relations between parameters m; and
angles ¥, ¢, %. The relation between parameters l; and m; was established in /5/, where it
was shown that the equations of the basic problem of inertial navigation in terms of para-
meters m; are of the same form as Egs. (3.5) (with the substitution of m; for ),

The Liapunov stability of solutions of Egs. (3.5) for any continuous functions o,. Wy, O
was proved in /12/. Equations /2.2/ are equivalent to Eqs. (3.2), (3.4) and (3.5) when ;
are defined by the continuous functions (1.8), and are equations of the gyropendulum preces-
sion in terms of the Rodrigues— Hamilton parameters. It is therefore, possible to conclude
that solutions of Egs. (2.2) and (1.8) of the gyropendulum in terms of the Rodrigues — Hamilton
parameters are Liapunov stable.
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The established analogy between precession equations of the gyropendulum and the egua-
tions of the basic problem of inertial navigation enable us to state that the solutions of
Egs. (1.9) of the gyropendulum in terms of Euler~Krylov angles, as well as of Egs, {(2.2) and
{1.8) in terms of Rodrigues—Hamilton parameters are Liapunov stable. One must, however, bear
in mind that the values

at =0, p* =0, v* = y* () (1* = 0y)

of variables a, f, v and the respective values
ho* = cos (Y*/2), A = A* = 0, X = sin (y*/2)

of variables 3; for which the principal axis of the gyropendulum coincides with the vertical,
are not particular solution of Egs. (1.9) in terms of Euler—Krylov angles and of Egs. (2.2)
and (1.8) in terms of the Rodrigues-—Hamilton parameters. Because of this, the conclusion on
the Liapunov stability of equations soclutions of the gyropendulum precession does not imply
motion stability of the gyropendulum principal axis with respect to the vertical. This
problem requires separate consideration. The problem of unambiguous determination of angles
@, 8, y in terms of the Rodrigues— Hamilton parameters A; must, also, be considered. For
this, the method described in /5/ should be used, taking into account that w, f§, ¥ may assume
any values in the intervals (—nx/2, n/2), (—n/2, n/2), and (0,2r), respectively.

Structure of the general solution of system (2.2) is given in /5,7,16/. The sclutions
of Egqs. (2.2) are also known for particular cases of specification of vector , for instance,
for vector @ whose direction in the coordinate system (J2°°2° is constant, and for vector o
effecting a conical motion. Hence for the establishment of the structure of the general solu-
tion of system (1.9}, as well as for the cases of specifications of the angular velocity vec-
tor © it is necessary to use formulas (2.1).

4, Let us derive the linear differential equations defining the precession motion of a
gyropendulum relative to the geographical trihedron /2,3/ in finite angles.

Let Oz*y*z+ be a geographic system of coordinates whose
axis Ozt coincides with Oz° -axis of the Darboux trihedron
0z°y°;° and is directed along the terrestrial sphere radius,
and the Oz*-and (Oy*-axes point to the East and North,re-
spectively. We attach to the gyropendulum rotor axis z the
coordinate system (z%y*;* whose (z* ~axis is directed along
the rotor axis. Position of the coordinate system Ox*y*:*
relative to the geographical trihedron Oz*y*z+ is defined by
angles o By, ¥; (Fig.2). The angles @, and p, determine
the position of the gyropendulum rotor axis z relative to
the trihedron Oz*y*z+.

The angular velocity e* of rotation of the coordinate
system Oz*y*;* relative to the trihedron Oz*y*z* is in con~
formity with the vector equation (1.7) of the form

Fig.2
o* =a(F —mw)/ H— o* (4.1}

Pt

where ®* is the absolute angular velocity of the geographical trihedron.
For the projections w,* of vector ®* on the axes of the coordinate system Oz*ytzt we
obtain the following formulas:

0 = — amwy | H — uy, ©* = —amw, | H — uyy 0% = —a (F + mwg) | N — u, (4.2)
where w, and u; are projections of vectors W and ®* on the axes of the coordinate system
Oz*y*z*, which are defined by formulas appearing in /2,3/.

Projections ©;* may also be represented in the form (see Fig.2)

0% = —Bycosa, + y cos Prsing, @ = o, Ly sinB,y ©F =§ sinay - v cosP; cosay (4.3)

Using expressions (4.2) we solve Eqs. (4.3) for the derivatives «,'. §,’, v, and cbtain
the formulas given in /2,3/ for equations of precession motion of the gyropendulum rotor axis
z relative to the geographical trihedron

H (o cos By— u,sin a, sin §; — uy cos By — u, cos a; sin fy) = (4.4)

a (F 4+ mw,) cos a, sin B, + amw, sin o, sin B; — amw,cos B,
H (B — uycos 2, -+ ugsinay) = —a {(F + mw,) sin o, 4+ amw, cos a,
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and the eguation

V1= — _—:T {(—;I— mw, + ul) sina; -+ [';7 (F + mws) + us] cos ‘11}

which, after the determination of the unknown functions a,(t). f; () from system (4.4), make
possible the establishment of the law of motion of the coordinate system (Qg*y*z* in terms ©
angle vy,.

We attach the solid body D* to the coordinate system Ozr*y*;* and introduce the finite
turn vector 6* which determines the position of body p* relative to the trihedron Oz*y*z*.
We denote by wv;(f = 0,1,2.3) the Rodrigues—Hamilton parameters that correspond to the finite
turn vector @+*. The kinematic equations of the spherical motion of body D* relative to the
trihedron (Qr+y+z* in texms of Rodrigues— Hamilton parameters v; are

&
i

. . .
vy = —(0*V1 + 0%V, — 0g*Vy), 2V; = @1*Ve + 0%y ©37Vy (4.5
2v, = 0, - 05V — 0%V, 2¥5 = @57V 4+ @)%V, — 0™V

when coefficients * conform to formulas (4.2), define in the geographical coordinate system

the gyropendulum behavior for finite angles of the rotor axis deflection from the vertical.

Thus for the determination of angles a, and f; which define the position of the gyro-
pendulum rotor axis I relative to the geographical trihedron for arbitrary motion of its base
over the Earth surface it is possible to solve, instead of two nonlinear differential equa-
tions (4.4), four linear differential equations (4.5) passing from parameters +v; to angles

a; and P; in conformity with formulas
tg @y = 2 (vovy + Viva) / (We* + vg? — vt — v,%), sin By =2(— vovy + vyvy)
derived similarly to (2.1).

In conclusion, we would point out that the inference about Liapunov stability of solutions
of Egs. (1.9), and (2.2) and (1.8) of precession motion of the gyropendulum rotor axis relat-
ive to the accompanying Darboux trihedron, arrived at in Sect.3, as well as those about the
particular cases of integrability of these equations in quadratures, can be extended to Egs.
(4.4) ,and (4.5) and (4.2) of precession motion of the gyropendulum rotor axis relative to the
geographical trihedron.
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